RTI minidome (RBINS)

         
- Portable led minidome (KULeuven) - Colour Allied Vision Prosilica GX 6600 camera of 28.8 Mpx - Macrolens Nikon Macro 200mm - Desktop/Laptop to control the camera
Transportable in a car
Basic training
Description
1.16µm/pixel
 

For specimens smaller than 25cm and  surface with small relief a 2D+ (Virtual illumination) approach is suggested. There are no commercial setup but several prototypes available in the community. 

This setup can be used to image fossils, bones with cut marks, archaeological artefacts, macro wear in teeth

3D model of a mobile Palaeolithic art from “le Trou des Nutons”. Above: coloured surface model; middle: Surface without texture; below: image processed with automatic filtering method to highlight surface features of bison bone. The acquisition was made with a 5 Mpx RGB machine vision camera.
 
 

This setup can be used to image flat specimens like butterflies. 

 
Perisama cardases captured with PLD. The normal colour image with relighting option is found on the upper left. Upper right is the grey scale image, bottom left the normal map and bottom right algorithmically-generated sketch using a filter.

 

MacDonald L.W. 2014. Colour and directionality in surface reflectance. 40th Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB 2014): 223–229. 

Malzbender T., Gelb D. & Wolters H.J. 2001. Polynomial texture maps. Proceedings of the 28 th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001): 519–528. ACM, Los Angeles.

Manfredi M., Williamson G., Kronkright D., Doehne E., Jacobs M., Marengo E. & Bearman G. 2013. Measuring Changes in Cultural Heritage Objects with Reflectance Transformation Imaging. In: Addison A.C., De Luca L., Guidi G., Pescarin S. (eds) 2013 Digital Heritage International Congress (DigitalHeritage): 189–192. IEEE, Marseilles. https://doi.org/10.1109/DigitalHeritage.2013.6743730

Manfredi M., Bearman G. H., Williamson G., Kronkright D., Doehne E., Jacobs M. & Marengo E. 2014. A new quantitative method for the non-invasive documentation of morphological damage in paintings using RTI surface normals. Sensors 14 (7): 12271–12284. https://doi.org/10.3390/s140712271

Minidome. SD. Minidome Webpage. Available from http://www.minidome.be/v01/home.php [accessed
23 Jul. 2018]. 

Mudge M., Malzbender T., Schroer C. & Lum, M. 2006. New Reflection Transformation imaging methods for rock art and multiple-viewpoint display. The 7 th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST2006): 195–200.

Padfield J. & Saunders D. 2005. Polynomial texture mapping: a new tool for examining the surface of paintings. ICOM-CC Preprints, the Hague (1): 504–510. 

Pawlowicz L. 2016. Affordable Reflectance Transformation Imaging Dome. Available from https://hackaday.io/project/11951-affordable-reflectance-transformation-imaging-dome [accessed 25 Jul. 2018].

Piquette K. 2011. Reflectance transformation imaging (RTI) and ancient egyptian material culture. Damqatum: The CEHAO Newsletter - El boletín de Noticias del CEHAO 7: 16–22.

Portable Light Dome. 2017. Portable Light Dome, Relighting Cultural Heritage. Available from https://portablelightdome.wordpress.com/ [accessed 23 Jul. 2018]. 

Salvant J., Walton M., Kronkright D., Yeh C-K., Li F., Cossairt O. & Katsaggelo A.K. 2017. Photometric Stereo by UV-Induced Fluorescence to Detect Protrusions on Georgia O’Keeffe’s Paintings. Computing Research Repository Graphics (cs.GR) abs/1711.08103. https://arxiv.org/abs/1711.08103

Van der Perre A., Hameeuw H., Boschloos V., Delvaux L. Proesmans M., Vandermeulen B., Van Gool L. & Watteeuw L. 2016. Towards a combined use of IR, UV and 3D-imaging for the study of small inscribed and illuminated artefacts. In: Homom P.M. (ed.) Lights On … Cultural Heritage and Museums!: 163-192. FLUP, University of Porto, Porto.

Watteeuw L., Vandermeulen B., Van der Stock J., Delsaerdt P., Gradmann S. & Truyen F. 2017. Illuminare, Centre for study of Medieval Art. RICH Project. Available from http://ec2-34-244-170-214.eu-west-1.compute.amazonaws.com/accordion-item/rich/ [accessed 23 Jul.
2018].

Willems G., Verbiest F., Moreau W., Hameeuw H., Van Lerberghe K. & Van Gool L. 2005. Easy and cost-effective cuneiform digitising. The 6 th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST. http://hdl.handle.net/1854/LU-8572126

 

Pipeline
Cost(s)
-Preparation time: No specific preparation time needed -Digitization procedure: This depends on the amount of pictures needed per view. Large extended views, require more images, hence more time. Specific requested views, might take more time too. -Image analysis: No specific time is needed here.
-Digitization procedure: depending on the workstation (RAM memory and GPU), the stacking procedure can take few minutes to a few hours for a complete day of picturing. -Image analysis: The images are stacked automatic using the Zerene Stacker software using the PMax option. This can be done while picturing a new specimen or overnight. After the images are stacked the images can be improved using photography software (DxO Optics Pro) in batch processing. The final step is adding a scale according to the magnification used. Setting up the first batch programs might take some time to tweak, but once saved they can be used for future batches.
For detailed cost information please inquire.
Contents
Image JPEG image minidome.jpg